Regent iTech - Software Training Institute

Corporate, Online and Classroom Trainng

Advanced Technology Hands On Training

Software Development - Mobile and Web   Call:9513325606

Python Data Science Training - using Python & tools and Techniques - Introduction,Extract, collate and analyze data from a variety of sources.

The tools and techniques used to make the extraction of insights easier in both Data Analytics and Data Mining is called Data Science, Understanding about : Data Analytics Data Analysis Data Mining Data Science Machine Learning Predictive Analytics Big Data Business intelligence Data warehousing Business Analytics Hadoop IOT DevOps Start with the following : Learn a SQL tool(like Oracle) Learn a NoSQL tool(like Cassandra) Learn an ETL tool(eg Informatica) Learn a BI tool(eg Tableau, Opensource BIRT).(At this point you are on a very good track towards Big Data and you will be able to understand how to handle it) Now learn Hadoop( Hadoop is a broader term and is an ecosystem of tools like Apache Pig, Hive, Flume, MapReduce etc) Finally talking about analytics : participate in kaggle competitions (this gives you access to real time data sets )

Those who are willing to work in the field of data science and play roles like Data Analyst, Data Engineer,Data Scientist, Data Architect should learn this course

Data Science is the study of the methods of analyzing data, ways of storing it, and ways of presenting it. Often it is used to describe cross field studies of managing, storing, and analyzing data combining computer science, statistics, data storage, and cognition. For those who build or manage data systems and analysis and then use their technical and business or specific subject knowledge to bridge the technical and business sides of a company or scientific project

B,E , MTECH , MCA, Software Engineers with Experience in Programming Logic and Coding

PC or Laptop and Internet Connection

  - Ability to architect large scale systems.

  - High attention to detail including precise and effective customer communications

  - solve business problems by finding patterns and insights within structured and unstructured data.

  - Interpret data and analyze results using statistical techniques.

  - Design experiments, test hypothesis and build models.

  - Develop algorithms to extract information from Advanced data mining

  - predictive modeling (especially Machine learning techniques) skills

  - Learn how to visualize data through graphing/ charting/ information display skills

Build Excellent data structures & algorithms skills

Experience of working on massively large scale data systems •

Experience in leverage user data for behavioral targeting & ad-relevance

Experience of building products that are powered by data, insights and visualisation tools.

Ability to architect large scale systems.

work with structured and unstructured data.

Interpret data and analyze results using statistical techniques.

Design experiments, test hypothesis and build models.

Develop algorithms to extract information from Advanced data mining

Apply predictive modelling (especially Machine learning techniques) skills

Data Science in Depth Course detail is as mentioned below

Newswhip/ Parsely/ Flurry/ Optimizely/ Google Analytics 360/ Google DFP Premium/ Google Big Data Query/ Comscore/ first party cookies

Create actionable insights from content and audience data

Advanced Exposure and hands on experience in driving insights at a product/channel level from to Google Analytics/Mixpanel/Fire base/ Omniture or a similar web tool. data analytics for App Marketing, SEM, SEO, B2B lead generation, Email Marketing etc

Segment audiences based on profile/ behavior and create personas

Basics of Structured query Langauge - SQL . Learn query languages such as SQL. Experience with extracting data, SQL queries, and producing analytics

IDLE, Pycharm, IronPython, Notebook, Aneconda, PIp, Spyder IDE, PyLint, PyChecker, Notebooks such as Zeppelin, Jupiter, Databricks, etc

KNMIE, Data Applied, Zeptospace, DevInfo, KNitr, pytz and babel, rpy2, Aneconda, Cython, D3.js, Python – Web scraping Tools, DataWrapper, Octave

Capstone, seaborn, pylab, Mathplotlib, ahiny, rcharts, GoogleVIS, Graph DB's • Experience with data visualisation tools, such as D3.js, GGplot, etc

understanding of text mining , Search technologies and NLP techniques. NLP and contextual analysis, strategic recommendations

ROOT is an object-oriented framework for data analysis.- Numby, scipy, sumpy, pandas, quandl, scilit, LAPACK, LIBSVM, pyTables, RADIS, ROOT. Experience with common data science toolkits, such as R, Weka, NumPy, MatLab, etc.

Statistical analysis of flow data using Python and Redis , Statistica , scipy-stats, Akka, ANOVA, statistical inference

Statistical concepts and calculations - correlation, regression analysis, Trend analysis, Descriptive analysis

Good applied statistics skills, such as distributions, statistical testing, regression, etc

Knowledge and expertise with typical statistical packages and libraries - R, NLTK, NumPy, SciPy

Analytical and quantitative skills to develop project business cases and deciding the right priority.

A business case is a document that uses the problem and the goal statements and converts it into a statement of business value.

The management might understand that there is a problem and that you have a goal after reading your problem and goal statements. However, is your project solving one of the most urgent problems confronting the organization is what the business case is supposed to convey.

All of that data was brought together to discover previously unknown trends, anomalies and correlations

The final purpose using data mining is to mine the rule and knowledge given a large set of data without having to know its patterns.

The knowledge is extracted and represented like rules. These rules can be used to predict the future data. Data mining is the act of using computational software to discover patterns in large sets of data

Excellent data structures & algorithms skills. Experience of working on massively large scale data systems

Experience in leverage user data for behavioral targeting & ad-relevance . Experience of building products that are powered by data & insights

Modeling tools (ERWin, Power Designer, ERStudio)

Customer Modelling and analytics, driving enhancements, advertising/ behavioral/ marketing/ transactional analytics specialist in identifying, developing and implementing the appropriate statistical techniques, algorithms and data mining analysis to create new, scalable solutions that addresses business challenges.Tools : python, Tableau, Octave, Matlab, D3.js, dyGraphs, DataWrapper, Javascript, MongoDB, SQL, SQL, Excel

Ability to find valuable insights out of cluttered and unorganized data with expert Data Analysis, Customer Analytics, Marketing Analytics

Using MongoDB, Cassendra, Hbase, Databases, Mallet, PyBrain , PyTables

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. Virtualized environments such as ESX, Xen, KVM, or AWS and EC2 NAS and/or SAN Distributed file system experience

Working on Talend ETL Tools<, SAS, SPSS, BusinessObjects, Cognos, Qlikview, MicroStrategy, Pentaho, etc

Analytcal and ETL Tools and Visualization Platforms – Tableau, D3 Web Scraping - Visualization and Reporting Tools like Qlikview and Micro Strategy and tableau - working with data services team to do ETLs (extract, transform, and loading) Good experience in working with any ETL tools such as Informatica, Talend , Pentaho and/or open source tools popular data analytics tools include KNIME, Data Applied, R, DevInfo and Zeptospace

Data warehousing The technology associated with storing data to allow for either reporting or transactions typically.

Spotfire, Open Source BIRT , Informatica, Tableau, jasper, qlikview, Lattice system , ggplot2 system

reporting and dashboards for marketing and traffic as well as funnels across multiple products

Devise ways to accurately measure the impact of each and every marketing/product initiative. • Report and analyse

website traffic data by channels, cities, page type, devices etc. • Devise models that identify reasons for the dips and increase in website traffic/transactions. • Estimate the potential impact of planned marketing initiatives

Predictive Analytics Creating a quantitative model that allows an outcome to be predicted based on as much historical information as can be gathered. In this input data, there will be multiple variables to consider, some of which may be significant and others less significant in determining the outcome. The predictive model determines what signals in the data can be used to make an accurate prediction. The models become useful if there are certain variables than can be changed that will increase chances of a desired outcome.

Data mining is more about exploring data, whereas machine learning is focused on determining precise functionality and thereby studying this data.


– Logistic Regression, Naïve Bayes, CART, Decision trees, CHAID, Random forest, MaxEnt, Neural Networks, Support Vector Machines, Reliability models, Markov Models, Stochastic models, Bayesian Modeling, Classification Models, Cluster Analysis, Neural Network, Non-parametric Methods, Multivariate Statistics Machine Learning - Bayesian, Decision Trees and Neural Networks.Predictive Analytics, Data Visualization, Product Analytics, Data Mining & Business Intelligence, Web Analytics, Logistic Regression, Clustering, Decision Tree etc

Machine learning is the set of tools processes and algorithms to construct the learning function. The function is then expected to generalize the learning to real world facts and provide inferences, predictions etc. Machine learning describes a class of technologies that enable computers to detect patterns and determine contextual meaning. The term usually applies to autonomic approaches where computers do not require human intervention.

Machine Learning: this is one of the tools used by data scientist, where a model is created that mathematically describes a certain process and its outcomes, then the model provides recommendations and monitors the results once those recommendations are implemented and uses the results to improve the model

scikit-learn, Spark.

understanding of machine learning techniques and algorithms, such as Clustering, k-NN, Naive Bayes, SVM, Decision Forests, etc. • Experience with common data science toolkits, such as R, Spark MLib, TensorFlow, MatLab, etc. Excellence in at least one of these is highly desirable

Machine Learning - Bayesian, Decision Trees and Neural Networks Expertise in analytical techniques such as Supervised ML (Linear Regression, Logistic Regression, Cart, Chaid, Random Forest, KNN, SVM, etc), Unsupervised ML (K-Means, Distance metrics, etc), Forecasting (Exponential Smoothening, ARIMA, etc), Linear/Non-linear Optimization

Web Application Development using Django, MangoDB & Flask

Introduction - Hadoop Technologies

Big data is only data but it means a lot of data. It might be so big that you might not be able to use traditional computer tools and need parallel processing, distributed computing and even cloud computing. Hadoop Streaming API

Working on Machine Learning applications and tools such as Mahout, Mallet, PyBrain

A nonparametric test is a hypothesis test that does not require the population's distribution to be characterized by certain parameters.

Non parametric tests to modify the hypotheses

non-parametric covers techniques with varying structure of a model .

Practical Application appying techniques

Medical, Pharmacy, Online Shopping, CRM etc

• We Focus on more generic and open source solutions

• Programs are taught by Data experts

• Vast experience in Application and Data Management industry

• Program tailored to participants needs

• Arrange Job Interviews

• Trained Many Candidates

Office Address

No - 1328, 24th 'A' Main, 41st Cross, Jayanagar 9th Block, Jayanagar, Bangalore. Karnataka, India - 560041. Landmark :opposite to Ragigudda / Central Mall , Behind Big Bazaar, Near Jain University & Opposite to and Himalaya Drugs , Call : 9886272445 / 9513325606